Obtaining and Solving Systems of Equations in Key Variables Only for the Small Variants of AES
نویسندگان
چکیده
This work is devoted to attacking the small scale variants of the Advanced Encryption Standard (AES) via systems that contain only the initial key variables. To this end, we introduce a system of equations that naturally arises in the AES, and then eliminate all the intermediate variables via normal form reductions. The resulting system in key variables only is solved then. We also consider a possibility to apply our method in the meet-in-the-middle scenario especially with several plaintext/ciphertext pairs. We elaborate on the method further by looking for subsystems which contain fewer variables and are overdetermined, thus facilitating solving the large system.
منابع مشابه
Block Ciphers
[6] Stanislav Bulygin and Michael Brickenstein, Obtaining and solving systems of equations in key variables only for the small variants of AES, 2008. [7] , Obtaining and solving systems of equations in key variables only for the small
متن کاملPreconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation
Introduction Fractional differential equations (FDEs) have attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme may be a good approach, particularly, the schemes in numerical linear algebra for solving ...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملA New Method for Considering Distribution Systems in Voltage Stability Studies
In methods presented to calculate the voltage collapse point, the transmission system is usually the only part of the power system that is completely modeled. Distribution systems are often replaced by aggregate load models because the use of the detailed model of distribution systems in voltage stability analysis not only increases the computation time, but also decreases the probability of co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Mathematics in Computer Science
دوره 3 شماره
صفحات -
تاریخ انتشار 2008